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Abstract 

We show that the group of automorphisms, DG(M), of a compact Rogers" supermanifold, M, 
admits the structure of a G ~c manifold. We establish that the space of paths on Dc (M) based at the 
origin and the space of loops at the origin also admit G ~ structures such that we obtain an exact 
sequence of G ~ groups. 
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O. Introduct ion 

The work of Rogers [24] makes it possible to speak of compact supermanifolds. It is well 

known that the group of diffeomorphisms of a compact manifold is an infinite-dimensional 

Lie group, I. Singer asked me during a conversation several months ago if the group of 

automorphisms of a compact supermanifold admits the structure of a super Lie group. 

We shall address this question in Section 2. In Section 1 we shall generalize Rogers" 

constructions so that in an infinite-dimensional context they are adequate for the strucutre 

that exists on the group of automorphisms of a compact Rogers' supermanifold. In Section 2 

we observe that finite-dimensional supermanifolds can be considered as ordinary C -~ man-- 

ifolds with a specified G structure which we described. We then prove that the automor- 

phisms of such a G structure on a compact supermanit'old, D G ( M ) ,  is a Lie subgroup 

of the group of C *c diffeomorphisms of the underlying C ~ structure of the superman- 

ifold in question. We proceed to construct explicitly a system of charts on Dc;(M)  for 
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which the chart changes are G °° morpbisms, and show that the group operations are also 
G oo" 

In Section 3 we show that the space of paths on DG (M)  admits in a canonical manner a 

supermanifold structure such that the evaluation map is a G °° map. Then we use a version 

of  Lie's second theorem that we have proved elsewhere [15] to establish that the space of  

loops at the identity, I 2 ( D G ( M ) ) ,  is also a super Lie group so that we obtain a G ~ exact 

sequence of super Lie groups 

o 

e ~ S-2(DG(M)) w-~ C°° ( I ,  D G ( M ) )  I----~DG (M)  ~ e, 

o 

where DG (M)  is the connected component of the identity of  DG (M). 

1. Differential equations in infinite-dimensional graded topological vector spaces 

We recall that a Hausdorff, sequentially complete, locally convex topological vector 

space V is called strongly bornological (resp. bornological) when any subset (resp. convex 

subset) absorbing all the bounded subsets of V is a neighborhood of the origin. In general, 

in this paper, the topological vector spaces which we deal will be strongly bornological. 

Note that metrisable locally convex topological vector spaces are strongly bornological as 

are countable inductive limits of strongly bornologicai spaces. 

Let F be the Grassmannian ring of  supernumbers generated by an arbitrary set ,%' ---- 

{xi }iel.  We shall suppose that F has the locally convex topological vector space topology 

given by the inductive limit topology taken over its finitely generated subalgebras. With 

this topology F is a complete locally convex Z2 graded commutative algebra (i.e. ab = 

(-- l)lallblba, where [al designates the parity of a). 

Definition 1.1. Let El . . . . .  E,z, F be topological Z 2 modules over F0, a continuous 

mapping 

f : El  x . . .  × En ~ F 

is a said to be an n-multimorphism when f is n-multilinear with repect to the ground field 

R and 

f ( e l  . . . . .  e iy ,  ei+l . . . . .  en) = f ( e l  . . . . .  ei, )/ei+l . . . . .  en), y E Fo 

and 

f ( e j  . . . . .  en},) = f ( e j  . . . . .  eny)  = f ( e l  . . . . .  e , ) y ,  y e Fo. 

We shall now describe the topological vector spaces upon which we shall model our 
supermanifolds. 

Definition 1.2. Let M be a graded Cartesian product of  F modules, M = I ] / ] ,  i e 1, El" = 

P Vi, and (l-I P) i  = l -I( /]) ,  i = 0, 1. A F0 submodule N of M will be called ~pal .  
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Definition 1.3. Give typal F0 modules Ql ,  Q2, Qk C 1-IiElt Fi' a FO homomorphism 

f : Q l w+ Q2 will be called regular when F is a subalgebra of an infinitely generated 

Grassmannian algebra A such that f extends to a Ao homomorphism of 01 = Ao Q1 into 

Q2 = AoQ2, where Qk is considered as a submodule of the corresponding Ao-module  

l-Iiclk Ai ,  Ai ~- A Vi. 

Remark .  Note that typicality and regularity are purely algebraic notions. 

The notion of differentiability that we shall use throughout the sequel is as follows: 

Definition 1.4. Given a Grassmannian algebra F', let V and W be typal topological mod- 

ules over F0 such that the underlying topologies are those of complete Hausdorff strongly 

bomological topological vector spaces, U ___ V open. A function f :  U ~ W will be called 

super C n or G" when 3 continuous k-multimorphisms in the k-terminal variables such that 

forx  6 U fixed, D x f ( x ; * )  is aregular mapping from V to W, and D k f ( x :  . . -)  : U × V × 

• . - ×  V~-~ W for k _< n is such that 

Fk(h) = f ( x  + h) - . f ( x )  - l / l !D , f (x ,  h) . . . . .  l / k ! D k  f ( x ,  h . . . . .  h), 

satisfies the property that 

F k ( t h ) / t  k, 
G k ( t , h )  = O, 

is continuous at (0, h)Vh c V. 

if t -¢ 0, 

t = 0 ,  

We shall refer to D x f ( X ,  .) as the Frechet derivative. 

Remark .  When F is finite-dimensional and N is of the form N = l~ic~t (Fl)i × ~]i~.~o (/]))l ,  
where X0, XI _c X, X a finite indexing set for the free module M = lqi~x Fi, Fi = F 

'v'i ~ X, we obtain Rogers' definition of G". 

Now we turn our attention to linear differential equations of  the form 

( , )  y ' = A ( t ) y ,  t 6 I I = [ 0 , 1 ] ,  

where A(t)  is a regular morphism of a/]} module. 

Definition 1.5. Consider the differential equation 

y ' ( t )  = A ( t ) y ,  t ~ 1, 1 = [ 0 , 1 ] ,  

where A (t) is a family of continuous linear operators on a bomological space E. The family 

of  operators {A(t)} will be called tame when 

(i) (t, x)  -+ A ( t ) x  is C°°; 
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(ii) {A(t)} is a strongly bounded family of  operators; that is, given a bounded set B C E, 

we have that U t ~ / A ( t ) B  is bounded in E; 

(iii) given any bounded disk B C E there exists a sequence of bounded disks Bl . . . . .  B,, . . . .  

so that: 

(a) Utct a( t )B  C B1, ~.JtcI a(t)Bn C B,,+l; 
(b) There exists a bounded disk D such that B, C Eo for all n and F,, -= y-~q >_,, ( 1/q !) 

Bq converges to 0 in Eo = ~ z > 0  ~.D as n tends to infinity. 

Proposition 1.1. If  y' = A(t)y is a tame linear differential equation, then there exits a 
unique flow ya(t, x) such that y~(t ,  x) = A(t)yz( t ,  x) with yA(O, x) = x," .further, if 
{A(t)} is a family of regular homomorphisms, then ~ ~ ya (t, ce) is a continuous regular 

1"0 ismorphism for all t E I, whose continuous inverse [3 ~ ga (t, [3) is a smooth function 
in t satisfying g~a (t, x) = --ga (t, A(t)x ). 

' = A(t)v, VA(0, X) = X: It is useful to recall the form of  the solution of YA . . . .  

y A ( t , x ) =  x + A(sl)xdsl  + A(s l )  A(s2)(x)ds2 dsl + . . .  

0 0 0 

The proof is essentially the same as for the analogous propositions in [16]. 

Definition 1.6. A(t, s) 
operators when 
(a) 

(b) 

(c) 

= As(t)  : E ~ E, ~, E R, called an amenable family of  tame 

A : I  × I × Ew-~ E i s C ~ ;  

Given any bounded disk B C E there exists a sequence of  bounded disks Bj . . . . .  B,, . . . .  

so that U(t,s)cl  ×1 A(t, s)B C Bj,  U(t,s)cl ×1 A(t, s)B,, C B , + l ;  
There exists a bounded disk D such that B, C ED for all n and F ,  = ~f~q>,(l/q!)Bq 
converges to 0 in ED ---- Uz>_0 k D  as n tends to infinity. 

We have proved in [16]: 

Theorem 1.1. Set Fa(x, y)~ = y A ( X ,  ga(Y, ~')), where A(t, s) is an amenable family of 
tame operators. Then OyA/O~r(t ~r)~ = fo Fa(t, s)OA(s, cr)/Ocr Fa(s, 0)~" ds. 

Given a bornological locally convex topological vector space E, a collection,/3, is called 

a system of generators of  the bounded sets of E when: 

(a) given any bounded subset B of E, 3 an element C c / 3  and r > 0 such that B C rC; 
(b) Bl ,  B2 E /3 ===> 3B E /3 such tht Bl U B2 C B. 

In what follows we shall use the C ~ topology on function spaces where the range, E, is 

a bornological topological vector space, what we intend by the C ~ topology we shall now 

describe. 

Consider the space of  C ~ mappings from the unit interval to E, C~( I ,  E). We put a 

topology on C ~ ( I ,  E) as follows: Let C be the set of  closed bounded disks of E, N the 

set of nonnegative integers, and let F(N,  C) be the set of functions from N to C; now, we 
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define an order on F ( N ,  C) by f < g when f ( i )  c_ g ( i )  for every i 6 N. With this order 

F ( N ,  C) becomes a directed set. For y E F ( N ,  C) let 

Fy = { f  E C~Z(I,  E):  DI f ( x )  c y(l)},  

where x c I ,  and let C ~ ( I ,  E ) ry  = Uz_>0 ;~F× be the Banach space with norm Ilfllr = 

inf{~. > 0: f ~ ~.F}. We provide C ~ ( I ,  E) = i n f l i m × C ~ ( l ,  E)ry  with the locally convex 

inductive limit topology. 

With the aid of Theorem 1.1 we are able to prove by essentially the same proof  as in [161 

the following: 

Theorem 1.2. Let  7"1 . . . . .  Tn and E by typal Fo modules  whose  underlying topological  

vector  space structures are strongly bornological  and in which bounded sets are relatively 

compact.  Suppose that U c E is open, I = [0, 1], and F : I x U x T1x .  . . x Tn ~-  E is a G °c 

func t ion  which is a multiaffine morphism in T1 . . . . .  Tn; that is, such that f o r  i = 1 . . . . .  n. 

ti ~ F ( t ,  u, tl . . . . .  ti . . . . .  tn) is o f  the f o r m  Li ( t l  . . . . .  tn) 4- c i ( t ,  u, tl . . . . .  [i . . . . .  tn), 

where L i and ci are G ~  func t ions  such that L i is an n-mul t imorphism and ci does not depend 

on ti. Given xo c U, to c (0, 1), t o E Ti let 13 (resp. Ci ) be a U - {x0} (resp.Ti ) sys tem o f  

generators  o f  the bounded sets in E (resp. Ti ), suppose that fi~r B ~ 13, Ci E Ci, there exists 

a sequence Bl . . . . .  Bn . . . .  o f  bounded disks in E satisfying xo + B + (3/ l ! )B1 + - . .  + 

( 3 m / m  !)Bin CC_ U f o r a l l  m, such that i f  It - t01 _< 5, we have that F ( t ,  B,  Yl . . . . .  Y,)  cc_ Bi,  

O F / O E ( t ,  w,  Yl . . . . .  yn)Bk  CC_ Bk+l,  Yi C Ci, and y~q>_,,(6q / q ! ) B q  converges toOin  El. for 

some I 6 13 as n tends to infinity. Then there exist  an open ne ighborhood Uo cc_ U o f  xo and 

Vi c_ Ti o f  t °, and a unique func t ion  49 : [to - 3, to + 3] × U0 x V1 x . . -  × Vn ~ U satis.~'ing 

Dt49(t, s, tl . . . . .  t , )  = F  (t, ¢ ( t ,  s, tl . . . . .  tn),q . . . . .  tn) ,¢( to,  x ,  tl . . . . .  t,z) = x;  furthel; 

alP(x, tl . . . . .  t , )  = cb(, ,  x ,  tl . . . . .  tn) defines a C~C func t ion  • : Uo × VI x . . .  × V,, 

C~([ t0  - 3, to + 6], E),  where C~([ t0  - 3, to + 6], E)  has the C ~ topology. 

2. Infinite-dimensional supermanifolds 

A supermanifold in this paper will be a manifold modeled on a typal F0 topological 

module, E, with G ~ chart changes. 

In the classical theory there is a one-one  correspondence between derivations of  the 

algebra of germs of  smooth functions at a point and the equivalence classes of  smooth curves 

through a point. For nontrivial F in the case of  a supermanifold the space of  superderivations 

of G ~ functions is strictly larger than the classes of smooth curves through a point giving 

rise to a vector at a point. Given a supermanifold modeled on a typal F0 module E, typically 

a vector would correspond uniquely to an element of E, while a superderivation 

X (ab) = X (a)b + ( - l ) l a l l X l a X  (b) 

would correspond to an element of  F ®to E. A super Lie group, G, thus has two algebraic 

structures associated to it; one is its classical Lie algebra, G, of  fight invariant vector fields 

with the classical Lie bracket satisfying Jacobi 's  identity, here G is a F0 module such that the 
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bracket satisfies [F0a, b] = F0[a, b]. The left invariant superderivations, on the other hand, 

correspond to an extension by scalars of  the smooth vector fields by f ' ;  that is, the super Lie 

algebra of  left invariant superderivations is isomorphic to F ® r 0  G. The superderivations 

satisfy 

(**) (-- I )IAIICI [ A,  [ B, C]] + (-- I )LBIIAI [ B, [ C, A]] 

q- (--1)ICIIBI[c, [A, B]] = 0, 

(**) is called the super Jacobi identity. 
Suppose now that E = (Fo) m × (F)  n is finite-dimensional, and let G be the group of  

continuous regular automorphisms of the F0 structure of  E. Let M be a supermanifold 

modeled on E, the supermanifold structure on M induces a G-structure on M; that is, 

reduces its underlying C °° tangent bundle to a G-bundle, since the Frechet derivatives of 

the transition functions are in G. 
We shall call a C °° manifold, M, of  dimension 2N- l (m + n) modeled on E, a quasi- 

supermanifold of type (m, n), when the tangent bundle can be reduced to the group G. Now 

given the fact that a G °~ mapping is a C °~ mapping whose derivative is a regular map, we 

deduce that the automorphisms of the supermanifold structure of  M are precisely the C °~ 

diffeomorphisms of M which are also isomorphisms of its quasi-supermanifold structure; 

that is, it is the group of  automorphisms of  the associated G-structure of M. 

Observe that the group G ___ GL(2 N-l  (m + n), R) is locally convex; that is, there exits a 

fundamental system of convex neighborhood of  the identity of G c_ GL(2 N-l  (m + n), R) 

with respect to the canonical vector space structure on the (2 N-l  (m + n))2-dimensional 

space of  square matrices. Note, firstly, that GL(q,  R) is always locally convex, since I + A 

is invertible for IIAII < 1, and observe that for p ~ AN,  Gp = {A c GL(2N- I (m + 

n), R): Ap = pA} is locally convex; further, the property or regularity is a locally convex 

property, thus G is locally convex. 

It is known [14] that when G C GL(n, R) is locally convex then the group of automor- 

phisms of a G-structure on a compact C °° manifold M is a Lie subgroup of the group of 

C ~ diffeomorphisms of  M. One of the purposes of  this note is to show that the group ofau-  

tomorphisms of the supermanifold structure on M, D c  (M), is itself an infinite-dimensional 

super Lie group with respect to the graded algebra F .  

In what follows we shall suppose that M is a compact connected G ~ supermanifold. 
The supermanifold structure on M determines canonically a typal F0 module structure on 

TxM for each x 6 M. The elements q~ 6 DG(M)  determine regular F0-homomorphisms 

Tdp : TrM ~ T4,(x)M, 

which implies that the Lie subalgebra of the C °~ vector fields on M corresponding to DG (M) 

considered as a C c~ Lie subgroup of  Diff°°(M) consists precisely of the G ~ vector fields 
on M with respect to the canonically determined supermanifold structure on TM; we shall 
designate this Lie algebra by S. 

The definitions imply that: 
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Proposit ion 2.1. S is a Fo-module such that [a)~, b] = [a, )~b] and [a, bZ] = [a, b])~ for  

), c Fo. 

We are now in a position to prove the following theorem. 

Theorem 2.1. With respect to the Z2 graded algebra F, DG (M) is a super Lie group. 

Proof  We choose charts o n  DG (M) that are given by means of  the exponential, expc,  of a 

G-connection; for details see [ 14]. We then obtain a chart at the identity e,~p : S w+ Dc  (M) 

defined by e~pG(oe)(x) = expa(~(x))  for a sufficiently G ° small. 

Using normal coordinates and calculating we find 

Dx(efcpG(X) )(x,  et) = (x + Xx,  a + gx(Ot) ), 

where gx is in the image of the canonical representation of the Lie algebra of G in the Lie 

algebra of the endomorphisms of  TxM given by the G-structure on M, which, since G is 

locally convex, consists of  regular F0 homomorphisms, which implies that the differentials 

of  the changes of  charts given by egp are G ° ( M ,  F)-homomorphisms. Given f 6 D c  (M), 

defineSf = { g : M  ~ T M : : r o g  = ,f, where:r  : T M  ~ M isthecanonicalprojection} we 

construct a chart at f by e~p : S  T ~ DG(M)  as above. With these charts which determine 

a G ° structure on DG(M),  fight multiplication by g in DG(M)  is represented at the 

infinitesimal level simply by composition from the right S f  ~ Sfog, ot ~-~ a o g. This 

is clearly a G ° mapping. Left multiplication by f in DG(M) at the infinitesimal level 

is represented by Z, :Sg w-~ Slog, where Z,(a)(x) : Tg~x)f(ot(x)). As T x f  is a regular 

homomorphism for all x ~ M it follows that right multiplication is indeed a G ° mapping. 

As right and left multiplication are G °c, to see that inversion is everywhere G ° it suffices 

to observe that inversion is G ° at the identity. Since the Frechet derivative of inversion at 

the identity is the multiplication by - 1, we conclude that inversion is an everywhere G ~ 

mapping. E] 

3. Space of paths 

The C ° topology on C ° ( 1 ,  S)  is the underlying topology of  an infnite-dimensional Lie 

group structure. To describe this Lie group, we first recall (see [ 16]) that a topological Lie 

algebra C is called preintegrable when given any closed bounded disk B c E there exists 

a sequence of  closed bounded disks Bi . . . . .  Bn . . . .  with 

(i) adB(B) = Ubl.b2~B[bl, b2] C BI, 
(ii) adB(Bn) _ Bn+l, 

(iii) Y~q>_n(1/q!)Bq converages to 0 in Cc = Uz>0 ~ c  for some bounded closed disk C 

as q tends to cx~. In [16] we show: 

Proposi t ion 3.1. Let G be a preintegrable topological Lie algebra, and v : I ~ ~ a C ~ 

function. Then there exists a unique f low 4)v ( t, x) o f  the differential equation y '  = [v(t), yl. 
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Proposition 3.1 puts us in position to define a product on C °° (I, S):  

(* * *) (v * w) = v ( t )  -~- Co(t, w ( t ) ) .  

The Frechet derivative of  left multiplication is given by Dx L v (x; a)  (t) = Cx (t, a (t)); 

and the Frechet derivative of fight multiplication is given by DxRw(x; fl)(t) = fi(t) + 
fo Fx(t, s)[w(s), Fx(s, 0)fl(t)] ds, where Fx(t, s) = (kx(t, ~Px(S, -)), ~Px(S, .) being the in- 

verse of 4~x (s, -). Now defining the F0 action on Cc~(I, ~) by (yu)( t )  = y~(t ) ,  we obtain 

that the F0 bilinearity and regularity of  the bracket imply that multiplication in this group 

structure is G e~. To see this we utilize the infinite series expression of  the solution of  a 

linear differential equation in bornological spaces (cf. Section 1). 

In [16] we showed that inversion is given by g-1  = yg, where yg is equal to the solution 

of  a differential equation smoothly parametrized by g: yl = F(t, y, g) = ~g(t, -g~(t) - 
[g, Cg(t, y)]). Again the F0 bilinearity of  the bracket implies that y ~ y-1 is a G °~ on 

C°°(l,  S). 
In [15] we defined a Lie group G as nice when the following conditions are satisfied: 

Given a Lie group G modeled on a complete bornological space ~ the manifold structure 

on G gives a local trivialization of  the tangent bundle TG at e E G over a coordinate 

neighborhood of  G at e say (U, q~), where ~b(e) = O 6 ~. Identity (TIU)e with q~(U) × G 

by means of 4~. Now, in general, a right invariant vector field ff over U with respect to this 

trivialization will define a nonconstant C °° function X¢ : U w-~ G. We say that the Lie group 

G is nice when there is a ~b(U)-system of generators of the bounded sets of G,/3, so that 

given any B c / 3  and any closed bounded C C G there exists a sequence of bounded sets 

i n ~ , C n ,  n >  1 , a n d 0 < E  < 1 such that 

(1) Xc(EC) C Cl for~" 6 eB; 

(2) DX~(~C + ~/l!Cl  + . . .  + ~n/n!Cn; Cn) C Cn+l for ff ~ EB; 

(3) there exists a positive integer p and D ~ /3  such that Dn = ~-~.q>_n(~q/q!)Cq C D for 

n > p converges to 0 in Co = Ux>__0 )~D. 
It follows from the definitions that a Lie subgroup of a nice Lie group is nice, which 

implies that DG (M) is a nice C °° Lie group. In [ 16] we showed that there exists a Lie group 

isomorphism, (r - l ,  from the C °° Lie group structure defined above on C~(I ,  $) to the 

space of  C °° paths at the identity, C ~  (I, DG (M)), where (r ( f )  (t) is defined by logarithmic 

differentiation; that is, cr ( f ) ( t )  = f ' ( t )*  f (t) - l  , '* '  begin, by abuse of notation, the Frechet 

derivative of  the right Lie group multiplication on DG (M) at f ( t )  by f ( t )  -1 . Further, the 

endpoint evaluation Lie group homomorphism for the C °° topology on C~( I ,  D e (M)) 
ev : C~( I ,  DG(M)) ~ DG(M) is given by e v ( ( f ) ) ( I )  = f ( 1 )  = y(1), where y(t) is 

the solution to the equation y'(t) = or(f ) ( t ) ,  y(t), y(0) = e, which corresponds locally 

to an integral equation of  the form: y~(t) = fo F(v, yv(s)) ds, yv(O) = 0; where v w-~ 

Yv is C °°, yo(t) -- 0, F(0,  y) = 0, F(v, O) = v. To show that ev is a super Lie group 
homomorphism it would suffice to show that the associated Lie algebra homomorphism 
Dv=0(ev ocr -1) : C~(I ,  S ~ DG(M) is a regular f'0 homomorphism. The properties of 

F(v, y) above imply that Do=0(ev o cr - j )  = f0 l : C°°(I ,  S)  w-~ S;  however, the bracket in 

C~( I ,  S) is defined by [f ,  g](t)  = Dt[fo f ( s )  ds, fo g(s) ds]. The immediately preceding 
paragraph shows: 
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Theorem 3.1. The evaluation map defines a G ~ homomorphism from the super Lie group 

o f  C ~ paths at the identity o f  DG(M)  onto the connected component o f  the identity o f  

DG(M).  

References 

[ 1 ] R. Arens, A generalization of normed rings, Pacif. J. Math. 2 (1952) 4 5 5 4 7  I. 
[21 A. Banyaga, The Structure of Classical Diffeomorphism Groups, Mathematics and its Applications 

(Kluwer Academic Publishers, Dordrecht, 1996), to appear. 
[3] A. Banyaga and P. Donato, Sur I'integration de l'algebre de Poisson, preprint. 
[4] M. Batchelor, Graded manifolds and vector bundles: A functorial correspondence, J. Math. Phys. 26 

(1985) 1578-1582. 
[5] N. Bourbaki, Espaces Vectoriels Topologiques (Hermann, Paris) Chapters III and IV. 
[6] Y. Choquet-Brubat and C. Dewitt-Morett, Analysis, Manifolds and Physics. Part 11, 92 (North-Holland, 

Amsterdam, 1989). 
[7] B.S. DeWitt B.S. Supermanifolds (Cambridge University Press, London, 1984). 
[8] D.G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, 

Annals of Math. 92 (1) (1970) 102-163. 
[9] Hogbe-Nlend, Theorie des Bornologies etApplications, Lecture Notes in Mathematics, Vol. 213 ( 1971 ). 

[10] N. Kamran and T. Robart, Sur la theorie locale des pseudogroupes de transformations continus infinis 
I, to appear. 

[11 ] O. Kobayashi, Y. Maeda, II Omori and A. Yoshioka, On regular Frechet Lie groups IV, Tokyo J. Math. 
5 (2) (1981). 

[ 12] B. Kostant, Graded manifolds, graded Lie theory and prequantization, Differential geometric Methods in 
Mathematical Physics, Lecture Note in Mathematics, eds. K. Bleuler and A. Reetz, Vol. 570 (Springer. 
Berlin, 1977)pp. 177-306. 

[13] D.A. Leites, The theory of supermanifolds, (in Russina), Karelian Branch Acad. Sciences U.S.S.R., 
Petrozavodsk (1983). 

[ 14] J. Leslie, Two classes of classical subgroups of Diff(M), J. Differential Geom. 5 (3/4) ( 1971 ) 427-435. 
[15] J. Leslie, Some integrable subalgebras of the Lie algebras of infinite dimensional Lie groups, Trans. 

Amer. Soc. 333 (1) (1992). 
[16] J. Leslie, Lie's Third Theorem in Supergeometry, to appear. 
[17] E. Michael, Multiplicatively convez topological algebras, Mem. Amer. Math. Soc. 11 (1952). 
[18] J. Milnor, Remarks on infinite dimensional Lie groups, Proc. Summer School on Quantum Gravio, 

(1983). 
[19] L. Natarajan, E. Rodriguez-Carrington and J.A. Wolf, New classes of infinite dimensional Lie groups 

Part 2, Proe. Sympos. Pure Math. 56 (1994). 
[20] V. Pestov, On a "super" version of Lie's third fundamental theorem, Lett. Math. Phys. 18 (1989) 2733. 
[21] V. Pestov, Even sectors of Lie superalgebras as locally convez Lie algebras, J. Math. Phys. 31 (1991) 

2S32. 
[22] J.M. Rabin, How different are the supermanifolds of Robers and DeWitt?, Commun. Math. Phys. 102 

(1985) 12387. 
[23[ T. Robart, Sur I'integrabilite des sous-algebres de Lie en dimension infinie, to appear. 
[24] A. Rogers, A global theory of supermanifolds, J. Math. Phys. 21 (1980) 1352-1365. 
[25] A. Rogers, Super Lie groups: Global topology and local structure, J. Math. Phys. 22 (1981) 930. 
[26] I.M. Singer and S. Sternberg, The infinite groups of Lie and Cartan I, J. d'Anal. Math. 15 (1965) 1-114. 
[27] P. Teofilatto, Enlargible graded Lie algebras of supersymmetry, J. Math. Phys. 28 (5) 1987. 


